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A new mechanism is proposed for the generation of Tollmien–Schlichting (T–S) waves
by free-stream turbulence. For definiteness and self-consistency, the mechanism is
described mathematically by using a triple-deck formalism. The free-stream turbulence
is represented by convecting gusts consisting of the so-called vortical and entropy
waves of small amplitude. We show that suitable convecting gusts can interact with
sound waves in the free stream to produce a forcing that has the same time and
length scales as those of the T–S waves, thereby exciting such waves in the vicinity
of the lower branch of the neutral stability curve. The T–S waves so produced
have the order of magnitude of ε2R5/16, where ε is the amplitude of the free-stream
disturbance and R the global Reynolds number. The scale conversion is achieved
without resorting to any non-homogeneity on the wall, and hence the mechanism
operates in a flat boundary layer. Furthermore, the T–S waves so generated do not
undergo any immediate decay, as they may do in some other receptivity processes.
For homogeneous isotropic free-stream turbulence, the spectrum of the T–S waves
is obtained. The efficiency of the receptivity mechanism is assessed by parametric
studies.

1. Introduction
Laminar–turbulent transition in a boundary layer is a complex process involving a

sequence of linear and nonlinear events. The first of these is the so-called receptivity
process (Morkovin 1969; Reshotko 1976), in which external disturbances present in
the environment (e.g. in the free stream and/or on the wall) excite internal oscillations
within the boundary layer. In the case of weak external disturbances, the internal
oscillations propagate into the unstable region downstream, wherein they experience
exponential amplification, and are called Tollmien–Schlichting (T–S) instability waves.
The characteristics of the T–S waves, including their dispersion relation, the distri-
bution normal to the wall and the amplification rate, can be well predicted by linear
stability theory. Further downstream, nonlinear effects become significant, leading to
the final breakdown of laminar flow. In the case where the external disturbance is
sufficiently strong, the transition may occur prematurely without the involvement of
the T–S waves.

One of the important experimental observations is that the transition location
depends on the nature and intensity of the disturbance in the environment, in
particular on the turbulence level in the free stream. Such a dependence has been
attributed to the size of the initial instability waves that the external disturbances
excite. The aim of receptivity study is to calculate this initial amplitude, which
obviously cannot be provided by stability theory since the instability waves appear as
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eigensolutions. It is known that the initial amplitude crucially affects the subsequent
development. Clearly, for effective laminar-flow control, it is important to study the
receptivity as well as the stability properties.

As was shown by Kovasznay (1953), within linear approximation a general small-
amplitude unsteady disturbance in the free stream can be decomposed into three
different types: acoustic, vortical and entropy modes. The first corresponds to the
pressure fluctuation, which propagates through the fluid with the speed of sound.
The latter two represent vorticity and temperature perturbations being convected by
the free stream without causing pressure fluctuation. Because of this feature, they
are usually referred to as convecting gusts. In many applications, they have been
used to represent the free-stream turbulence. The length and time scales of each of
these disturbances do not satisfy the dispersion relation of the T–S waves, and hence
none of them alone is capable of generating T–S waves. Therefore the key issue of
receptivity studies is to identify scale-conversion mechanisms, which ‘tune’ the time
and/or length scales of the external disturbance so as to match those of the T–S
waves.

Significant theoretical contributions were made by Goldstein (1983, 1985) and
Ruban (1984), whose works were apparently stimulated by important experiments
of Leehey & Shapiro (1980), Kachanov, Kozlov & Levchenko (1978) and Aizin &
Polyakov (1979). All these investigations were concerned with the receptivity due to
acoustic disturbances. Goldstein (1983) shows that the so-called Lam–Rott eigensolu-
tion (which can be excited by the sound interacting with the non-parallel mean flow
near the leading edge) undergoes wavelength shortening under the influence of the
non-parallel-flow effect and finally turns into T–S waves near the lower branch of the
neutral curve. Further calculations of the T–S amplitude were performed by Gold-
stein, Sockol & Sanz (1983). This receptivity, however, is somewhat weak in the sense
that the waves experience considerable decay before reaching their neutral-stability
point. A more efficient mechanism was proposed independently by Goldstein (1985)
and Ruban (1984). They show that the oscillatory flow driven by the sound wave
interacts with a relatively rapid local variation in the mean flow induced by a small
roughness (i.e. hump) on the wall, or sudden curvature change such as the one that
occurs at the juncture of the leading-edge ellipse and the straight portion of the plate,
to produce an unsteady forcing that takes on the frequency of the sound and the
length scale of the local mean flow. Due to this forcing the T–S waves are generated
in the unsteady scattered field. The coupling between the sound wave and the T–S
waves is most efficient when the roughness or curvature change is near the lower
branch, for which case the coupling coefficient is of order one. See also Goldstein &
Hultgren (1987).

It became clear from the analyses of Goldstein and Ruban that in order for the
acoustic disturbance to excite T–S waves, what is crucial is some form of short-scale
variation (inhomogeneity) either in the mean flow or in the boundary conditions.
In addition to the localized surface roughness, such inhomogeneity can be caused
also by many other factors including marginal separation (Goldstein, Leib & Cowley
1987), local wall suction/blowing and change of wall admittance (Choudhari 1993,
1994). All the aforementioned theoretical studies except the last two adopted a high-
Reynolds-number approach, reviews of which are given by Goldstein & Hultgren
(1989) and Kozlov & Ryzhov (1990).

A finite-Reynolds-number approach based on the Orr–Sommerfeld (O–S) equation
was formulated by Choudhari & Streett (1992) and Crouch (1992). Some earlier
work by Russian researchers can be found in Zhigulev & Tumin (1987). This method
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retains the essence of the Goldstein–Ruban theory, but uses inhomogeneous O–S
equations rather than the triple-deck equations to compute the mean-flow distortion
as well as the resultant T–S waves. The same method has been employed to study
the receptivity due to distributed roughness. Given the success of the O–S equation
in predicting the linear growth rate of T–S waves, it has been hoped that this
approach, in spite of its inherent inconsistency, may lead to more accurate results
for receptivity problems. However, the finite-Reynolds-number approach has other
limitations. For instance it cannot be applied to the receptivity problem of marginal
separating flow or to the case where the roughness is large, because in both cases
the mean-flow distortions become nonlinear, and must be described by the triple-
deck approach. Roughness of large size was tackled numerically by Bodonyi et al.
(1989). Recently, Hammerton & Kerschen (1996, 1997) and Haddad & Corke (1998)
investigated the effect of leading-edge bluntness on the efficiency of receptivity. More
recent experiments include Saric, Wei & Rasmussen (1995), Kobayashi et al. (1995)
and Kosorygin, Radeztsky & Saric (1995). In the first of these papers, quantitative
comparisons were made with existing theory for the leading-edge acoustic receptivity,
while the last two studied the interference between the T–S waves generated by the
leading edge and multi-roughness elements.

Despite its importance, the role of vortical disturbances in the generation of T–S
waves is less well understood. As stated above, this type of mode is not associated
with any pressure gradient, and hence does not penetrate into the boundary layer in
the sense that its signature is exponentially small there as was shown mathematically
by Gulyaev et al. (1989). Based on this and the fact that the local mean-flow variation
produced by a roughness concentrates in the region near the wall, one might conclude
that vortical disturbances are unable to excite T–S waves. Such a conclusion was found
to be somewhat premature by Duck, Ruban & Zhikharev (1996), who investigated
this receptivity process using a triple-deck approach. They observe that the roughness-
induced mean flow outside the boundary layer, though of relatively small magnitude,
does not vanish completely. So it can interact with the vortical disturbance to generate
T–S waves (see also Kerschen 1991). The coupling coefficient, is a factor of R−1/8

smaller than that in the corresponding acoustic case. For a typical Reynolds number
R = 106, this means that the amplitude of the T–S wave is 1

6
of that generated by

the sound. Calculations using an O–S approach estimate that the coupling is even
weaker (Crouch 1994), although it improves for the three-dimensional, low-frequency
vortical gust (Choudhari 1996). Exist-ing theoretical results therefore do not seem to
comply fully with the general expectation that the vortical disturbance ought to be
an efficient T–S wave generator as can be inferred from the experimental evidence
that the transition location depends strongly on the turbulence level (as well as on
other factors such as wall roughness). Ryzhov & Timofeev (1995) investigated the
generation of the wavepackets by the interaction of a line vortex with a local surface
roughness.

Experiments on receptivity to vortical disturbances have proved to be more chal-
lenging than those on acoustic perturbations. It is very hard to control and quantify
the vortical disturbances because of their random nature. Any T–S waves that they
may produce are usually obscured by the broadband response of the boundary layer,
especially by the large-amplitude, low-frequency components, i.e. the so-called ‘Kle-
banoff modes’ (see e.g. Kendall 1985; Westin et al. 1994 and references therein).
Indeed, when the turbulence level is high, the Klebanoff mode may lead to bypass
transition while the energy in the T–S frequency band appears relatively small. Never-
theless, the experiment of Kendall (1990) provided direct evidence for the generation
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of T–S waves in the form of packets on a nominally flat-plate boundary layer, and
established their role in the transition process. But the mechanism of their generation
is still unclear. In the course of revising the present paper, we note that Dietz (1999)
has successfully conducted controlled experiments, in which a single-frequency gust is
generated by using a vibrating ribbon in the free stream. His experiments provide for
the first time quantitative data regarding the initial amplitude of T–S waves generated
by a convecting gust interacting with a wall roughness element.

In this paper, we shall propose a new mechanism for the generation of T–S waves
by the free-stream turbulence. It involves the direct interaction between a convecting
gust and a sound wave of suitable frequencies and wavenumbers so as to achieve scale
conversion. Unlike the mechanism in the Goldstein–Ruban theory, the conversion of
the external scales does not require any form of non-homogeneity on the wall or
in the mean flow. Given that both the acoustic and vortical disturbances are always
present in the free stream, this new mechanism (like the leading-edge mechanism)
seems particularly pervasive, operating even in the simplest flows such as the flat
boundary layer.†

The rest of the paper is organized as follows. The problem is formulated in
§ 2, where we first explain the physical idea in our receptivity mechanism without
relying on mathematical details (§ 2.1). This is followed by specifying the necessary
asymptotic scalings so as to describe the mechanism in the framework of the triple-
deck approach. The dominant interaction takes place in the upper deck, and this
is analysed in § 2.2. We show that the pressure at the quadratic order satisfies a
Poisson equation (or an inhomogeneous wave equation in the supersonic regime), and
contains the signature bearing the T–S wave scales. The forcing in the upper deck is
transmitted, via the middle deck, to the lower deck, which is considered in § 3. We
show that the boundary-layer equations in the lower deck couple to the Poisson (or
the forced wave) equation to form an inhomogeneous system. Since its forcing term
is in resonance with its eigenmode – the T–S wave – this system has a solution only if
the T–S wave solution is included at a suitable lower order. The necessary solvability
condition then determines the amplitude equation of the generated T–S wave. The
solution to the amplitude equation enables us to introduce an appropriate coupling
coefficient in § 4, where the receptivity process is discussed in detail by examining how
the T–S waves develop from the upstream response. In § 5, we consider the generation
of T–S waves by homogeneous free-stream turbulence. By a suitable superposition of
the solution for each Fourier mode, we calculate the spectrum of the T–S waves in
terms of those of the external turbulence. The efficiency of the coupling is assessed
by parametric studies in § 6.

2. Formulation and scalings
We consider the two-dimensional compressible boundary layer over a semi-infinite

flat plate. The oncoming flow is assumed to be uniform with velocity U∞, perturbed
by three-dimensional small-amplitude disturbances. The mean density, temperature
and sound speed in the free stream are denoted by ρ∞, T∞ and a∞ respectively. The
unsteady disturbance will be specified later. We define the Reynolds number

R = U∞l/µ∞

† This result, however, should not be interpreted as implying that surface roughness is unimpor-
tant. In fact it has been well established that transition process is extremely sensitive to the surface
quality.
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and the Mach number

M = U∞/a∞,
where l is the typical distance from the leading edge to the location where the
receptivity commences. We assume that M is of O(1) and covers both the subsonic
(M < 1) and supersonic (M > 1) regimes. In the former regime, the viscous T–S
instability is the only possible instability. In the supersonic regime, the T–S waves
persist provided that they are sufficiently oblique (Smith 1989). The flow now also
supports inviscid Rayleigh instability waves, which have asymptotically larger growth
rates. However, in the low-Mach-number supersonic range, the oblique T–S waves
appear to have the largest growth rate in numerical sense (Mack 1984), and therefore
continue to play an important role in transition. Even in the fairly high-Mach-number
regime, the generation of T–S waves may still be relevant because the T–S waves
are the first to be excited by the external disturbance. They then evolve into inviscid
Rayleigh waves as the upper branch of the neutral curve is approached.

The flow is to be described in the Cartesian coordinate system (x, y, z), with its origin
at the leading edge, where x and y are along and normal to the plate respectively, and
z is in the spanwise direction; they are non-dimensionalized by l. The time variable
t is normalized by l/U∞. The velocity (u, v, w), density ρ, temperature T , pressure
p, and shear and bulk viscosities µ and µ′ are non-dimensionalized by U∞, ρ∞, T∞,
ρ∞U2∞ and µ∞ respectively.

The fluid is assumed to be a perfect gas with a constant ratio of specific heats, γ.
The governing equations of the flow are

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

ρ
Du

Dt
= −∇p+

1

R
∇ · (2µe) + ∇((µ′ − 2

3
µ)∇ · u), (2.2)

ρ
DT

Dt
= (γ − 1)M2 Dp

Dt
+

1

PrR
∇ · (µ∇T ) +

(γ − 1)M2

R
Φ, (2.3)

γM2p = ρT , (2.4)

where e and Φ represent the tensor of the strain rate and the dissipation function:

eij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, Φ = 2µe : e + (µ′ − 2

3
µ)(∇ · u)2,

and Pr is the Prandtl number. The shear viscosity µ depends on the temperature T ,
but the viscosity law does not affect the result of the present paper because the T–S
instability, to leading order, is controlled by the wall shear, and does not depend on
the detailed profile of the boundary layer flow.

2.1. The physical idea

Let us first explain the basic idea of our receptivity mechanism in fairly general terms
before presenting it in the mathematical framework of a triple deck.

Suppose that a sound wave and a convecting gust are present in the free stream,
and can be represented by

εs ei(αsx−ωst) and εc ei(αcx−ωct)

respectively, where εs (εc), αs (αc) and ωs (ωc) denote the amplitude, wavenumber
and frequency of the sound (gust) respectively. For simplicity of illustration, here
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we have taken the disturbances to be two-dimensional and also implicitly assumed
that the sound propagates downstream in the streamwise direction, although these
restrictions will be relaxed later on. At leading order the acoustic and vortical modes
are independent, with each being governed by a set of linear equations (see e.g.
Kovasznay 1953), which show that

αs = Mωs/(1 +M), αc = ωc. (2.5)

At the quadratic order, the two waves can interact with each other. This produces a
forcing proportional to

exp i{(αc ± αs)x− (ωc ± ωs)t}.
In a strictly uniform flow, the secondary flow due to the mutual interaction, which
acts to mediate the energy transfer between different modes, can be calculated by
a regular perturbation procedure, as was highlighted by Chu & Kovasznay (1958).
However, in a shear flow which supports instability waves such as T–S waves, the
situation is more interesting and intriguing in that the mutual interaction may lead
to excitation of the eigenmodes. To see this point, let us suppose that the dispersion
relation of the T–S waves is

F(ωTS , αTS , R; M) = 0 (2.6)

which relates the frequency ωTS and the wavenumber αTS at a given Reynolds number
R. In general for a given frequency ω, the wavenumber αTS = αr + iαi is a complex
number except at the neutral Reynolds number Rc. Now if

ωc − ωs = ωTS , αc − αs = Re (αTS ), (2.7)

the response to the forcing would be similar to, but not exactly the same as, the T–S
wave when R 6= Rc. The magnitude of the response is of order εsεv . When R ≈ Rc,
the relations (2.7) guarantee the resonant condition between the forcing and the T–S
wave, leading to the generation of the latter. Mathematically, the resonant condition
means that in order for the inhomogeneous system at the quadratic order to have an
acceptable solution, the T–S wave must be included in the expansion at a suitable
lower order.

The idea is in the same spirit as that of Luo & Zhou (1987), who were the first
to propose that the interaction of two disturbances in the free stream may excite
T–S waves in a flat boundary layer if the differences in their wavenumbers and
frequencies satisfy the dispersion relation (2.6). However, in Luo & Zhou’s model, the
two participating disturbances were specified arbitrarily. This unfortunately makes
their model artificial because the free-stream disturbance must be a combination of
convecting gust and acoustic modes, each of which has its own dispersion relation
such as (2.5).

The physical idea of our receptivity mechanism clearly applies to three-dimensional
disturbances, and indeed the inclusion of three-dimensionality is crucial for the
generation of T–S waves in the supersonic regime. In the following we shall take
convecting gusts to be three-dimensional while the acoustic perturbation is two-
dimensional. This choice is based on two obvious reasons: first, in any controlled
experiments, it is much easier to introduce a planar sound than a two-dimensional
gust; secondly in ‘natural’ situations, the oncoming gusts are most likely to be three-
dimensional. As will become clear later, the above choice eventually allows us to
consider the interaction between a sound wave and isotropic turbulence.
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2.2. Asymptotic scalings

We now present the above mechanism on a quantitative basis. Although this could
be done by using the O–S equation, we shall adopt the triple-deck formalism because
first it is the appropriate mathematical framework describing the T–S waves; secondly
it conveniently accommodates the interaction between the free-stream disturbances,
as we shall see; thirdly and perhaps most importantly, the non-parallel effect, which
plays a key rôle in the present mechanism, can be accounted for in a consistent manner
only by a high-Reynolds-number asymptotic approach. In contrast, a finite-Reynolds-
number approach would have to make use of a somewhat ad hoc approximation in
order to include this effect.

For the lower-branch T–S waves, the frequency and wavelength scale with the
Reynolds number as ωTS = R2/8ω̂TS , αTS = R3/8α̂TS . Such a scaling applies to both
subsonic (Terent’ev 1981) and supersonic regimes (Smith 1989) except at transonic
speeds. It follows from (2.5) and (2.7) that in order for the resulting forcing to have
the same length and time scales as the T–S waves, it is necessary for the wavenumbers
of both the convecting gust and the acoustic mode, αc, β (the spanwise wavenumber)
and αs, to be of O(R3/8). Their frequencies, ωc and ωs say, would be of this order since
their phase velocities are of O(1). The above considerations suggest the following
scaling for the wavenumbers and the frequencies:

αc = R3/8α̂c, αs = R3/8α̂s, β = R3/8β̂; ωc = R3/8ω̂c, ωs = R3/8ω̂s, (2.8)

in accordance with which we introduce the time, the streamwise and spanwise variables

t̄ = R3/8t, x̄ = R3/8x, z̄ = R3/8z. (2.9)

While the convecting gust and the acoustic mode both have relatively high frequencies,
the difference of their frequencies must be relatively small so as to coincide with that
of the T–S waves, i.e. ωc − ωs = O(R−1/8ωc), which can be more precisely expressed
in terms of the rescaled frequencies as

ω̂c − ω̂s = R−1/8ω̂TS . (2.10)

Upstream of the neutral point, x0 say, of the T–S wave with the rescaled frequency
ω̂TS , the quadratic interaction generates a small-amplitude response. But in the vicinity
of x0, the forcing becomes in resonance with the T–S wave if the condition

α̂c − α̂s = α̂TS (2.11)

is satisfied, where α̂TS is the neutral wavenumber of the T–S wave. On approaching
x0, the forced response tends to infinity in magnitude, and takes on the characteristics
of the T–S wave. It may be expected that the forced response upstream eventually
evolves into the T–S wave after going through the resonance. In order to describe this
crucial process and also to obtain the uniformly valid solution near x0, it is necessary
to include the non-parallel flow effect, which becomes important in an O(R−3/16)
neighbourhood of x0 (Ruban 1983; Hall & Smith 1984). So we introduce

x1 = (x− x0)/R
−3/16. (2.12)

The amplitude of the T–S wave will be a function of x1, and matches to the forced
response upstream as x1 → −∞. In the x1 = O(1) region, the variation of the growth
rate with the streamwise position occurs at the same scale as the amplitude. This
non-parallelism underpins the matching between the forced response and the T–S
waves; see § 4 and figure 1. The importance of the O(R−3/16) vicinity of the neutral
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point was also noted by Choudhari (1993) in his study of the receptivity due to
distributed roughness. However the scaling there is somewhat blurred as the analysis
is based on a finite-Reynolds-number approach.

It follows from (2.9) and (2.12) that

∂

∂t
→ R3/8 ∂

∂t̄
,

∂

∂x
→ R3/8 ∂

∂x̄
+ R3/16 ∂

∂x1

,
∂

∂z
→ R3/8 ∂

∂z̄
. (2.13)

The flow is described by the standard triple-deck structure consisting of the upper,
main and lower decks. The procedure of determining the amplitude of the T–S wave
is similar to those in weakly nonlinear theory (cf. Hall & Smith 1982, 1984).

The mean flow is taken to be the Blasius boundary layer, the profile of which is
U(Ỹ ) (Ỹ = R1/2y). As Ỹ → 0,

U(Ỹ )→ λỸ

where the skin friction

λ = χx−1/2 with χ ≈ 0.332. (2.14)

We further expand λ about x0, the location where the T–S wave becomes neutral,

λ = λ0 + R−3/16λ1x1, with λ1 = − 1
2
χx
−3/2
0 . (2.15)

2.3. Upper deck and nonlinear interaction

In the upper deck, the transverse variable is ȳ = R3/8y and the expansion takes form

u = (1, 0, 0) + εu1 + ε2R3/16(uTSE + c.c.) + ε2u2 + · · · , (2.16)

p =
1

γM2
+ εp1 + ε2R3/16(pTSE + c.c.) + ε2p2 + · · · , (2.17)

T = 1 + ετ1 + ε2R3/16(τTSE + c.c.) + ε2τ2 + · · · , (2.18)

ρ = 1 + ερ1 + ε2R3/16(ρTSE + c.c.) + ε2ρ2 + · · · , (2.19)

where

E = exp {i(α̂TS x̄+ β̂z̄ − R−1/8ω̂TS t̄ )},
and a bold letter denotes a vector. The O(ε) terms represent the unsteady disturbance
in the free stream. We have assumed that the vortical and acoustic modes have the
same order of magnitude, i.e. εs = εc ≡ ε. This would not cause any loss of generality
because the self-nonlinearity of each mode does not come into play to the order
of our interest. Substitution of these expansions into (2.1)–(2.4) yields, at O(ε), the
equations (

∂

∂t̄
+

∂

∂x̄

)
ρ1 + ∇ · u1 = 0, (2.20)(

∂

∂t̄
+

∂

∂x̄

)
u1 = −∇p1, (2.21)(

∂

∂t̄
+

∂

∂x̄

)
τ1 = (γ − 1)M2

(
∂

∂t̄
+

∂

∂x̄

)
p1, (2.22)

γM2p1 = τ1 + ρ1. (2.23)

We remind the reader that hereafter operators such as ∇, ∇2 are defined with respect
to the scaled variables x̄, ȳ and z̄. The velocity and temperature may be eliminated
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from (2.20)–(2.23) to obtain a single equation for the pressure p1

M2

(
∂

∂t̄
+

∂

∂x̄

)2

p1 − ∇2p1 = 0. (2.24)

Equations (2.20)–(2.23) are subject to the boundary condition v1 = 0 at ȳ = 0. The
solution can be expressed as a sum of convecting gust and acoustic modes (Kovasznay
1953),

u1 = u(s) + u(c), (2.25)

p1 = p(s) + p(c), τ1 = τ(s) + τ(c), ρ1 = ρ(s) + ρ(c), (2.26)

where the suffices s and c refer to the sound and convecting gust respectively. The
acoustic mode is taken to be two-dimensional, and the solution has the form

u(s) = ûs eiα̂s(x̄−c̄t ) +c.c., p(s) = ps eiα̂s(x̄−c̄t ) +c.c., (2.27)

and similar expressions hold for τ(s) and ρ(s). By substituting p(s) into (2.24), the phase
speed c is found to be

c = 1± 1

M cos θ
with cos θ = α̂s/(α̂

2
s + β̂2

s )
1/2. (2.28)

Since θ is in the range (−π, π), we can take the ‘+’ sign without losing generality. It
follows from (2.20)–(2.23) that

ps = pa(e
iβ̂sȳ + e−iβ̂sȳ), (2.29)

ρs = M2pa(e
iβ̂sȳ + e−iβ̂sȳ), τs = (γ − 1)M2pa(e

iβ̂sȳ + e−iβ̂sȳ); (2.30)

us = M cos θpa(e
iβ̂sȳ + e−iβ̂sȳ), vs = M sin θpa(e

iβ̂sȳ − e−iβ̂sȳ). (2.31)

Note that the reflected wave has been included in order to satisfy the no-penetration
condition at the wall.

The convecting gust propagates with the free stream, and so in general its solution

can be represented as a supposition of the Fourier mode of eiα̂c(x̄−t̄ )+iβ̂z̄ . For simplicity,
we consider only one Fourier component in the gust so that in the far field (i.e.
ȳ →∞), the vorticity and temperature fluctuations are{

Ω(c)∞
τ(c)∞

}
=

{
Ω∞
τ∞

}
exp {iα̂c(x̄− t̄) + iβ̂vȳ + iβ̂z̄}. (2.32)

The solution in the ȳ = O(1) region can be sought of the form

u(c) = ûc(ȳ) eiα̂c(x̄−t̄)+iβz̄ +c.c., (2.33)

and τ(c) and ρ(c) have similar form, while p(c) = 0 as is implied by (2.21). We find that
the components of the gust velocity vector ûc are given by

ûc = u∞ eiβ̂v ȳ +(iα̂c/γ̂)v∞ e−γ̂ȳ ,

v̂c = v∞(eiβ̂v ȳ − e−γ̂ȳ),

ŵc = w∞ eiβ̂v ȳ +(iβ̂/γ̂)v∞ e−γ̂ȳ ,

 (2.34)

where γ̂ = (α̂2
c + β̂2)1/2, and u∞ ≡ (u∞, v∞, w∞) is related to Ω∞ by the relation

u∞ =
i

γ̂2
k̂ × Ω∞, k̂ ≡ (α̂c, β̂v, β̂).
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It follows immediately that k̂ · u∞ = 0, i.e.

α̂cu∞ + β̂vv∞ + β̂w∞ = 0. (2.35)

Corresponding to the vorticity (2.32), the far-field velocity fluctuation is

u(c)
∞ = u∞ exp {iα̂c(x̄− t̄ ) + iβ̂vȳ + iβ̂z̄}. (2.36)

The solution for the entropy mode in the gust is given by

τ̂c = τ∞ eiβ̂eȳ , ρ̂c = −τ∞ eiβ̂eȳ , (2.37)

where the constant τ∞ is independent of Ω∞. We have so far completed the specification
of the disturbance in the free stream. Note that since α̂c = ω̂c, the resonant conditions
(2.10) and (2.11) together with (2.28) give, to leading order,

α̂TS =
ω̂s

1 +M cos θ
, α̂c = ω̂s. (2.38)

The first relation above indicates that the frequency and directivity of the sound
completely determine the wavenumber of the T–S wave that it can excite.

The O(ε2R3/16) terms in (2.16)–(2.19) represent the T–S wave, and they must be
included so that the forced problem at the next order can have an acceptable solution.
For our purpose, we only need pTS and vTS . They are governed by the equations

∂2pTS

∂ȳ2
− {(1−M2)α̂2

TS + β̂2
}
pTS = 0,

∂vTS

∂x̄
= −∂pTS

∂ȳ
, (2.39)

which have the solutions

pTS = p̂1A(x1) e−γ̂TS ȳ , vTS = − iγ̂TS
α̂TS

p̂1A(x1) e−γ̂TS ȳ , (2.40)

with γ̂2
TS = (1−M2)α̂2

TS + β̂2. In the supersonic regime, the condition

β̂/α̂TS > (M2 − 1)1/2

must be satisfied in order for the triple-deck approach to be applicable (Smith 1989).
The function A(x1) is the amplitude of the T–S wave, the determination of which is
the main purpose of the present paper.

The O(ε2) terms are driven by the interaction between the convecting gust and the
acoustic wave. Substituting (2.16)–(2.19) into (2.1)–(2.4), then at the quadratic order
we obtain(

∂

∂t̄
+

∂

∂x̄

)
ρ2 + ∇ · u2 = −

(
∂ρTS

∂x1

+
∂uTS

∂x1

)
− ∇ · (ρ(s)u(c) + ρ(c)u(s)

)
, (2.41)(

∂

∂t̄
+

∂

∂x̄

)
u2 = −∇p2 +

∂uTS

∂x1

− ∂pTS

∂x1

i + ρ(c)∇p(s) − (u(s) · ∇)u(c) − (u(c) · ∇)u(s),

(2.42)(
∂

∂t̄
+

∂

∂x̄

)
τ2 − (γ − 1)M2

(
∂

∂t̄
+

∂

∂x̄

)
p2 +

∂τTS

∂x1

− (γ − 1)M2 ∂pTS

∂x1

= −(γ − 1)M2

{
ρ(c)

(
∂

∂t̄
+

∂

∂x̄

)
p(s) − u(c) · ∇p(s)

}
− (u(s) · ∇)τ(c) − (u(c) · ∇)τ(s),

(2.43)

γM2p2 = τ2 + ρ2 + ρ(c)τ(s) + ρ(s)τ(c). (2.44)
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Equations (2.42)–(2.44) can be reduced to a single equation for the pressure p2{
M2

(
∂

∂t̄
+

∂

∂x̄

)2

− ∇2

}
p2 = 2i(1−M2)α̂TSA

′(x1)p̂1 e−γ̂TS ȳ +Rsv + Rse, (2.45)

where

Rsv = ∇ · {(u(s) · ∇)u(c) + (u(c) · ∇)u(s)
}

+ (u(c) · ∇)(∇ · u(s)), (2.46)

Rse = ∇ · (τ(c)∇p(a)
)
, (2.47)

which are the forcing arising from the acoustic mode interacting with the vortical and
entropy modes respectively. Each of them consists of the components proportional
to the sum and difference frequencies, but only the latter component is relevant to
the generation of T–S waves. Also since this component has a much lower frequency,
the time derivative in (2.45) actually drops out with the result that (2.45) reduces to
a Poisson equation when M < 1 or an inhomogeneous wave equation when M > 1.
After a straightforward calculation aided by (2.35), we find that

Rse = −2paτ∞
{

(α̂2
s + β̂2

s − α̂sα̂c) cos (β̂sȳ) + iβ̂sβ̂e sin (β̂sȳ)
}

eiβ̂eȳ E, (2.48)

Rsv = {G1 cos (β̂sȳ) + G2 sin (β̂sȳ)} eiβ̂v ȳ E + {H1 cos (β̂sȳ) +H2 sin (β̂sȳ)} e−γ̂ȳ E, (2.49)

where

G1 = −2p∗aM
{

(α̂2
s + β̂2

s − α̂sα̂c) cos θ u∞ − β̂sβ̂v sin θ v∞
}
,

G2 = −2ip∗aM
{
β̂sβ̂v cos θ u∞ − (α̂2

s + β̂2
s − α̂sα̂c) cos θ v∞

}
,

H1 = −2ip∗aγ̂−1M
{
α̂c(α̂

2
s + β̂2

s − α̂sα̂c) cos θ + β̂s(α̂
2
c + β̂2) sin θ

}
v∞,

H2 = −2ip∗aM(α̂2
s + β̂2

s − 2α̂sα̂c) sin θ v∞.

 (2.50)

The solution for p2 takes the form p2 = (P̂2E + c.c.), and

P̂2 =

{
p̂2 +

iα̂TS
γ̂TS

(1−M2)A′(x1)ȳ

}
e−γ̂TS ȳ +

{
q(1)
v cos (β̂sȳ) + q(2)

v sin (β̂sȳ)
}

eiβ̂v ȳ

+
{
q(1)
e cos (β̂sȳ) + q(2)

e sin (β̂sȳ)
}

eiβ̂eȳ +
{
q(1)
γ cos (β̂sȳ) + q(2)

γ sin (β̂sȳ)
}

e−γ̂ȳ ,

where p̂2 is an undetermined function of x1 representing the complementary solution,
and

q(1)
v =

[
(γ̂2
TS + β̂2

s + β̂2
v )G1 + 2iβ̂sβ̂vG2

]
/Dv,

q(2)
v =

[−2iβ̂sβ̂vG1 + (γ̂2
TS + β̂2

s + β̂2
v )G2

]
/Dv,

q(1)
e = −2p∗aτ∞

[
(γ̂2
TS + β̂2

s + β̂2
e )(α̂

2
s + β̂2

s − α̂sα̂c)− 2β̂2
s β̂

2
e

]
De,

q(2)
e = 2ip∗aτ∞

[
2β̂sβ̂e(α̂

2
s + β̂2

s − α̂sα̂c)− β̂sβ̂e(γ̂2
TS + β̂2

s + β̂2
2 )
]
/De,

q(1)
γ =

[
(γ̂2
TS + β̂2

s − γ̂2)H1 − 2β̂sγ̂H2

]
/Dγ,

q(2)
γ =

[
2β̂sγ̂H1 + (γ̂2

TS + β̂2
s − γ̂2)H2

]
/Dγ,



(2.51)

with

Dv = (γ̂2
TS + β̂2

s + β̂2
v )

2 − 4β̂2
s β̂

2
v . (2.52)
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The expressions for De and Dγ are the same as for Dv provided that β̂v is replaced by

β̂e and iγ̂ respectively. Clearly as ȳ → 0,

p2 → (p̂2 + Fp)E + · · · , with Fp = q(1)
e + q(1)

v + q(1)
γ . (2.53)

By substituting p2 into the vertical momentum equation in (2.42), it can be shown
that

v2 → (iα̂TS )−1

{
Fv − iα̂TS

γ̂TS
(1−M2)A′p̂1 + γ̂TS p̂2 +

iγ̂TS
α̂TS

A′p̂1

}
E as ȳ → 0, (2.54)

where

Fv = −(iβ̂eq(1)
e + β̂sq

(2)
e

)− (iβ̂vq(1)
v + β̂sq

(2)
v

)− (−γ̂q(1)
γ + β̂sq

(2)
γ

)
. (2.55)

The forcing Fp and Fv due to the sound–gust interaction will be transmitted to the
lower deck via the main deck. Since no further interaction takes place there, the
components on the T–S wave scales arise merely as the response to the upper deck
and satisfy the standard main-deck equations. The streamwise and vertical velocities
have the familiar solutions (e.g. Smith 1989)

u = ε2R5/16BU ′(Ỹ )E + c.c., v = −ε2R−3/16 ∂

∂x

{
BU(Ỹ )E + c.c.

}
, (2.56)

where Ỹ = R1/2y and ∂/∂x should be transformed according to (2.13). In order to
match with the upper-deck solution, the displacement function B takes the form

B = A(x1)B1 + R−3/16B2(x1), (2.57)

with B1 and B2 being an undetermined constant and function respectively. By using
(2.15) and (2.13), it can be shown that

u→ ε2R5/16
{
λ0AB1 + R−3/16(λ1x1AB1 + λ0B2)

}
E + c.c. as Ỹ → 0, (2.58)

v → −ε2R3/16
{

iα̂TSAB1+R−3/16(A′B1 + iα̂TSB2)
}
E + c.c. as Ỹ →∞. (2.59)

3. The lower-deck response
In the lower deck, the flow is effectively incompressible and the appropriate trans-

verse coordinate is defined by

Y = R5/8y. (3.1)

The mean flow may be approximated, to the required order, by R−1/8λY , with the
skin friction λ given by (2.15). The solution can be written as

u = R−1/8(λ0+R−3/16λ1x1)Y + εUs+ε
2R5/16A(x1)Ũ1E + ε2R1/8Ũ2E + · · · , (3.2)

v = εR−1/4Vs + ε2R1/16A(x1)Ṽ 1E + ε2R−1/8Ṽ 2E + · · · , (3.3)

w = ε2R5/16A(x1)W̃ 1E + ε2R1/8W̃ 2E + · · · , (3.4)

p = εps + ε2R3/16A(x1)p̂1E + ε2P̃ 2E + · · · . (3.5)

Here we have ignored the exponentially small signature of the convecting gust. The
acoustic signature, represented by the Ũs, Ṽ s and ps, is not of our concern either
since there is no interaction taking place in the lower deck. We concentrate on the
T–S components. Substitution of these expansions together with (3.1) into (2.1)–(2.2)
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yields the linearized boundary-layer equations (Smith 1989)

iα̂TS Ũ1 + Ṽ 1,Y + iβ̂W̃ 1 = 0, (3.6)

i(α̂TSλ0Y − ω̂TS )Ũ1 + λ0Ṽ 1 = −iα̂TS p̂1 + Ũ1,Y Y , (3.7)

i(α̂TSλ0Y − ω̂TS )W̃ 1 = −iβ̂p̂1 + W̃ 1,Y Y . (3.8)

The above system is subject to the matching condition with the main deck:

Ṽ 1,Y → −iα̂TSλ0B1, W̃ 1 → 0 as Y →∞, (3.9)

and the no-slip condition Ũ1 = Ṽ 1 = W̃ 1 = 0 on the wall (Y = 0); the latter leads to

Ṽ 1,Y Y Y (0) = (α̂2
TS + β̂2)p̂1 (3.10)

after setting Y = 0 in (3.7)–(3.8) and using (3.6). The constant B1 in (3.9) is related
to p̂1 via

α̂2
TSB1 = γ̂TS p̂1, (3.11)

a relation provided by matching the upper-deck solution (2.40) with the leading-order
term in the main-deck solution (2.59).

By eliminating the pressure from (3.6)–(3.8), it can be shown that Ṽ 1,Y Y satisfies{
∂2

∂Y 2
− i(α̂TSλ0Y − ω̂TS )

}
Ṽ 1,Y Y = 0, (3.12)

which has the solution

Ṽ 1,Y =

∫ η

η0

Ai(η) dη, (3.13)

where Ai denotes the Airy function, and

η = (iα̂TSλ0)
1/3Y + η0, η0 = −iω̂TS (iα̂TSλ0)

−2/3 . (3.14)

Application of (3.9) and (3.10), together with (3.14) gives∫ ∞
η0

Ai(ζ) dζ = −iα̂TSλ0B1, (iα̂TSλ0)
2/3Ai′(η0) = (α̂2

TS + β̂2)p̂1, (3.15)

which with (3.11) lead to the dispersion relation (cf. Terent’ev 1981; Smith 1989)

∆(λ0) = 0, (3.16)

where

∆(λ0) ≡ iα̂TS (α̂2
TS+β̂2)

∫ ∞
η0

Ai(η) dη − λ0

[
(1−M2)α̂2

TS + β̂2
]1/2

(iα̂TSλ0)
2/3Ai′(η0). (3.17)

The neutral wavenumber and frequency can be determined by

α̂TS = λ
5/4
0 αN, β̂ = λ

5/4
0 βN, ω̂TS = λ

3/2
0 ωN, (3.18)

with αN , βN and ωN given by

α
1/3
N (α2

N + β2
N) = d1

(
(1−M2)α2

N + β2
N

)1/2
, ωN = d2α

2/3
N , (3.19)

where d1 ≈ 1.001 and d2 ≈ 2.299.
The terms Ũ2, Ṽ 2 etc. in (3.2)–(3.5) arise as the direct response to the forcing from
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the upper deck. They are governed by the equations

iα̂TS Ũ2 + Ṽ 2,Y + iβ̂W̃ 2 = −A′(x1)Ũ1, (3.20)

i(α̂TSλ0Y − ω̂TS )Ũ2 + λ0Ṽ 2 = −iα̂TS P̃ 2 + Ũ2,Y Y

−Λ(x1)Y Ũ1 − λ1x1Ṽ 1 − A′(x1)p̂1, (3.21)

i(α̂TSλ0Y − ω̂TS )W̃ 2 = −iβ̂P̃ 2 + W̃ 2,Y Y − Λ(x1)Y W̃ 1, (3.22)

where Λ is defined by

Λ(x1) = λ0A
′(x1) + iα̂TSλ1x1A. (3.23)

These equations are coupled to the upper-deck Poisson equation (or inhomogeneous
wave equation) via the matching conditions below. The boundary conditions again
follow from the no-slip requirement on the wall and the matching with the main-deck
solution (2.58), namely

Ũ2 = Ṽ 2 = W̃ 2 = 0 at Y = 0 ; Ũ2 → λ0B2 + λ1x1AB1, W̃ 2 → 0 as Y →∞.
These in turn imply that

Ṽ 2,Y → −iα̂TSλ0B2 − Λ(x1)B1 as Y →∞, (3.24)

Ṽ 2,Y Y Y = (α̂2
TS + β̂2)(p̂2 + Fp)− 2iα̂TSA

′p̂1 at Y = 0. (3.25)

Here we have used the result that P̃ 2 = p̂2 +Fp. The matching between the upper-deck
solution(2.54) and the second term in the main-deck solution (2.59) shows that

α̂2
TSB2 − 2iα̂TSA

′(x1)B1 = γ̂TS p̂2 − iα̂TS
γ̂TS

(1−M2)A′(x1)p̂1 + Fv. (3.26)

Now eliminating the pressure from (3.20)–(3.22), we can show that Ṽ 2,Y Y satisfies{
∂2

∂Y 2
− i(α̂TSλ0Y − ω̂TS )

}
Ṽ 2,Y Y = Λ(x1)Y Ṽ 1,Y Y = Λ(x1)(η − η0)Ai(η). (3.27)

The terms Fp and Fv in (3.25) and (3.26) represent the forcing, which is transmitted to
the lower deck through the matching. In order for equation (3.27) to have a solution
which also satisfies the boundary conditions (3.24) and (3.25), a solvability condition
must be satisfied. This could be derived by following the procedure given by Smith
(1979b) for the weakly nonlinear instability. Alternatively one may write out, via
order reduction, the general solution of (3.27) in terms of an Airy function, and then
obtain the solvability condition by applying the boundary conditions. We shall take
the latter course since for the present problem the right-hand side of (3.27) is so
simple that the general solution is found to be

Ṽ 2,Y = 1
3
(iα̂TSλ0)

−1Λ(x1)
{

(η − 3η0)Ai(η) + 2η0Ai(η0)
}

+ q2

∫ η

η0

Ai(η) dη. (3.28)

The boundary conditions (3.24) and (3.25) leads to

2
3
(iα̂TSλ0)

−1Λη0Ai(η0) + q2

∫ ∞
η0

Ai(η) dη = −iα̂TSλ0B2 − ΛB1, (3.29)

2
3
(iα̂TSλ0)

−1/3Λ
{

Ai′(η0)− η0Ai′′(η0)
}

+ (iα̂TSλ0)
2/3q2Ai′(η0)

= (α̂2
TS+β̂2)(p̂2 + Fp)− 2iα̂TSA

′p̂1. (3.30)
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Eliminating B2 and p̂2 from (3.26), (3.29)–(3.30), and using (3.15), we obtain

aA′ + b(iα̂TSλ1x1/λ0)A+ (α̂2
TS + β̂2)−1∆(λ0)q2 = −λ0(γ̂TSFp − Fv) , (3.31)

where

a = 2
3
η0Ai(η0) +

(
β̂2

γ̂2
TS

+
2α̂2

TS

α̂2
TS + β̂2

)∫ ∞
η0

Ai(η) dη

+
2

3

γ̂TS (iα̂TSλ0)
5/3

α̂2
TS (α̂2

TS + β̂2)

{
Ai′(η0)− η0Ai′′(η0)

}
,

b = 2
3
η0Ai(η0)−

∫ ∞
η0

Ai(η) dη +
2

3

γ̂TS (iα̂TSλ0)
5/3

α̂2
TS (α̂2

TS + β̂2)

{
Ai′(η0)− η0Ai′′(η0)

}
.

Since ∆(λ0) = 0 (see (3.16)), equation (3.31) further reduces to

A′(x1) = σx1A+N (3.32)

with σ and N given by

σ = −iα̂TSλ1b/(aλ0), N = −λ0(γ̂TSFp − Fv)/a. (3.33)

4. Matching with the upstream response and coupling coefficient
On assuming that the amplitude of the T–S wave vanishes as x1 → −∞, the

amplitude equation (3.32) has the solution

A(x1) = N eσx
2
1/2

∫ x1

−∞
e−σξ2/2 dξ. (4.1)

More precisely, it can be shown that as x1 → −∞,

A(x1)→ (N/σ)(−x1)
−1 + O(x1)

−3. (4.2)

That the above behaviour of A(x1) implies the matching with the upstream forced
response can be seen as follows. At an upstream location, x say, the forced solution
in the lower deck has expansions similar to (3.2)–(3.5) provided that the T–S wave
terms and the mean-flow deviation are dropped. The solution of the forced response
with the difference wavenumber (α̂c − α̂s) then can be found in a similar way as for
Ũ2 and Ṽ 2. In fact, one arrives at the same equation as (3.31) except that A = 0 and
λ0 is replaced by λ. We can identify q2 as the amplitude of the forced response, AF .
Since ∆(λ) 6= 0,

AF ≡ q2 = −λ(α̂
2
TS + β̂2)

∆(λ)
(γ̂TSFp − Fv).

A Taylor expansion of ∆(λ) about λ0 shows that as x→ x0,

AF → iλ2
0(γ̂TSFp − Fv)
α̂TSb(λ− λ0)

. (4.3)

The right-hand side is exactly R3/16(N/σ)(−x1)
−1 after substituting in (2.15) and (3.33).

Therefore (4.2) and (4.3) imply that

A(x1)→ R−3/16AF as x1 → −∞,
which is precisely what is required for the matching of the velocities in the two stages.
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Forced response
uF = O(ε2R1/8)

(sound) (gust)

Free stream

Main boundary layer

Nearly neutral T–S wave
uTS= O(ε2R5/16) O(R–5/8)

T–S wave
with O(1) growth rate

O(R–3/16)

x0

εu(s) + εu(c)

Resonance region

Figure 1. Sketch of the receptivity process due to the acoustic–gust interaction.

We now turn to the downstream limit, x1 → +∞. In this limit,

A(x1)→ A∞ eσx
2
1/2, with A∞ = N

∫ ∞
−∞

e−σξ2/2 dξ. (4.4)

As x1 = O(R3/16), the T–S wave eventually acquires an O(1) growth rate, and evolves
exponentially over the fast streamwise scale x̄. The amplitude now takes the usual
WKBJ form

A eiα̂TS x̄ = A∞ exp

{
iR3/8

∫ x

x0

α̂TS (x) dx

}
(4.5)

with the complex wavenumber α̂TS (x) being determined by local parallel stability
theory. Clearly the constant A∞ appears as the (scaled) initial amplitude of this
subsequent stage. Note that the non-parallelism has been crucial for ensuring the
matching of the solution in the vicinity of the neutral point with those upstream and
downstream.

Taking the above results together, we may summarize the receptivity process as
follows. The convecting gust and an acoustic wave with wavenumbers α̂c and α̂s
respectively interact in the free stream, generating an O(ε2) forcing, which then drives
a forced solution with O(ε2R1/8) streamwise velocity within the boundary layer. As
the flow evolves through the neutral position of a T–S wave with the wavenumber
(α̂c − α̂s), the forcing at the difference wavenumber (frequency) becomes in resonance
with this T–S wave and the non-parallel-flow effect comes into play. As a result of
these, the T–S wave develops from the forced solution and acquires an amplitude
of O(ε2R5/16). The T–S wave so generated continues to grow and finally enters the
order-one growth-rate stage. The whole process is illustrated schematically in figure 1.

In order to be precise, we shall use the maximum value of the streamwise velocity
component of the T–S waves as an indicator of their magnitude, since that is the
quantity that can be most accurately measured experimentally. First it can be shown
by using (3.8), (3.15) and (3.14) that

W̃ 1 =
iβ̂Ai′(η0)

α̂2
TS + β̂2

 L(η), (4.6)

where  L(η) is the solution to the equation  L′′ − η  L = 1 satisfying boundary condition
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L(η0) = 0 and L(∞) = 0. It then follows from (3.2), (3.6), (3.13) and (4.6) that the
maximum magnitude of the streamwise velocity at the neutral point is given by

uTS = ε2R5/16α̂−1
TSA∞Um, (4.7)

where

Um = max
η

∣∣∣∣∫ η

η0

Ai(η) dη − β2
N

α2
N + β2

N

Ai′(η0) L(η)

∣∣∣∣. (4.8)

While uTS is an appropriate measure of receptivity, it can hardly be measured directly
in experiments. Instead one usually has to measure the streamwise velocity of the
T–S wave at some disturbance downstream of the neutral point. That velocity is
then extrapolated back to the neutral point in order to make a comparison with uTS
defined by (4.7).

The quantity A∞ consists of two parts, A(v)∞ and A(e)∞ , which are contributed by the
sound-vorticity and sound-entropy interactions respectively; see (2.45) and (2.46)–
(2.47). We define the respective coupling coefficients, CV and CE , for the vortical and
entropy modes, as follows:

CV = ε2R5/16α̂−1
TSA

(v)
∞Um/(εu∞pa), CE = ε2R5/16α̂−1

TSA
(e)
∞Um/(ετ∞pa). (4.9)

While the scalings adopted in our analysis are convenient for theoretical purposes,
in experiments it is customary to scale the dimensional frequencies of the acoustic
disturbance and the T–S wave, ω∗s and ω∗TS , as

fs = ω∗s ν∞/U
2
∞, fTS = ω∗TSν∞/U

2
∞.

Correspondingly, the dimensional wavenumbers of the sound, the gust and the T–S
wave, α∗s , α∗c , α∗TS and β∗ are non-dimensionalized by U∞/ν∞, giving α̃s = α∗s ν∞/U∞,
etc. In terms of fs, we have

α̃s =
M cos θ

1 +M cos θ
fs, α̃c = fs, (4.10)

α̃TS =
fs

1 +M cos θ
.

Introducing the rescaling in (2.8), (3.18)–(3.19) and using (2.14), we find from these
relations that the location of the neutral position, non-dimensionalized by ν∞/U∞, is
given by

x̃0 ≡ U∞x∗0/ν∞ = χ2

{
fs

αN(1 +M cos θ)

}−8/5

, (4.11)

and that

β̃ =
βN

αN(1 +M cos θ)
fs, (4.12)

fTS =

{
fs

αN(1 +M cos θ)

}6/5

ωN. (4.13)

A simple correspondence exists between α̂s and α̃s etc., using which along with (4.10)
and (4.12) in (2.50)–(2.55) indicates that (γ̂TSFp − Fv)/α̂TS is independent of fs. The
streamwise length scale l can be taken as x∗0 so that x0 = 1. It then follows from
(3.33) and (4.4), and (4.8) that α̂−1

TSA∞ and Um are independent of fs. Now since the
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Reynolds number R is actually x̃0 defined by (4.11), equation (4.9) implies that CV
and CE scale with the sound frequency fs as follows:

CV = εκvf
−1/2
s , CE = εκef

−1/2
s , (4.14)

where κv (κe) depends on M, θ, βN , v∞/u∞ and βv (βe) with βv = β̃v/fs and βe = β̃e/fs.
The above relations indicate that the low-frequency components in the acoustic
disturbance are more efficient in exciting T–S waves. It should be noted, however,
that a large coupling coefficient does not necessarily imply a large magnitude of
the generated T–S wave, because the latter depends also on the amplitude of the
relevant component in the gust, i.e. on the spectra of the gust. The sizes of the
coupling coefficients and the T–S wave amplitude for typical parameter values will
be estimated in § 6.

5. Statistics of T–S waves generated by isotropic turbulence
Obviously a gust consisting of a single Fourier mode is a highly idealized model,

and can be of relevance only when a particular component is introduced artificially by
some means so as to dominate the naturally occurring ones. In reality, the turbulence
in the free stream consists of components of different frequencies and wavenumbers,
and thus can be better represented by the integral over all Fourier modes (cf. (2.32)
and (2.36)) {

u(c)∞
τ(c)∞

}
=

∫ ∞
−∞

{
u∞(k)
τ∞(k)

}
ei(k·x̃−k1 t̃) dk, (5.1)

where k = (α̃c, β̃v, β̃) and x̃ = (x̃, ỹ, z̃), non-dimensionalized by U∞/ν∞ and ν∞/U∞
respectively, and t̃ is normalized by ν∞/U2∞. For brevity, we shall omit the tilde over
x and t throughout this section. As in many studies of turbulence undergoing rapid
distortion (e.g. Hunt 1973; Hunt & Graham 1978; Goldstein 1978, 1979), the free-
stream turbulence is assumed to be statistically stationary and homogeneous, and that
the spectra of the velocity and the temperature (scalar) fluctuations, Φ(∞)

ij and Φ(∞)
s

say, are known. The spectrum of a random velocity field u = (u1, u2, u3) is defined as
the Fourier transform of the velocity covariance (correlation) tensor (Batchelor 1953)

Rij(x, r, τ) = ui(x, t)uj(x+ r, t+ τ), (5.2)

that is

Φij(k; x) =
1

(2π)3

∫ ∞
−∞
Rij(x, r, 0) e−ik·r dr. (5.3)

Likewise, the spectrum of a temperature fluctuation, Φ(∞)
s , is defined as the Fourier

transform of the temperature covariance.
The acoustic field is also random in reality. However, in order to make further

progress, we make the assumption that the sound is deterministic. This is completely
justified for the laboratory situation as the sound can be introduced in a well-
controlled manner. The random nature of the gust renders the direct measurement
of κv and κe impossible. Instead, we need to consider the statistical properties of the
T–S waves. A natural quantity to compute is the spectrum tensor of the T–S waves,
from which one may then calculate the mean-square value of the streamwise velocity
fluctuation in the T–S waves. To this end, we observe that for each T–S wave, its



Generation of Tollmien–Schlichting waves 303

streamwise velocity at a downstream location, x̃ say, can be written as

uTS = ε2f−1/2
s pa

{
(a11u∞ + a12v∞) + b1τ∞

}
exp

{
i

∫ x̃

x̃0

α̃TS (x̃) dx̃

}
(5.4)

by using (4.7), (4.5), (4.4) and (3.33), and substituting in the expressions for Fp and Fv .
The constants a11, a12 and b1 can be obtained explicitly, but for brevity we omit their
expressions. Similar results hold for other velocity components and the temperature.
Due to the linear relation between uTS and u∞, v∞ and τ∞, the relation between the
T–S spectrum, Φij , and the free-stream spectra, Φ(∞)

ij and Φ(∞)
s can be established, and

are the same as those given by Hunt (1973) despite the T–S waves not being involved
there. In particular, the component Φ11, which is of our prime interest, is

Φ
(v)
11 = ε4p2

af
−1
s

{∫ ∞
−∞
a∗1ka1l Φ

(∞)
kl dβ̃v

}
e2Ñ , (5.5)

Φ
(e)
11 = ε4p2

af
−1
s

{∫ ∞
−∞
|b1|2 Φ(∞)

s dβ̃v

}
e2Ñ , (5.6)

where Φ(v)
11 and Φ

(e)
11 denote the spectra of the T–S waves generated by the vorticity

and entropy fluctuations respectively (and are normalized by U∞(ν∞/U∞)3), and

Ñ(β̃, x̃) = −
∫ x̃

x̃0

Im
(
α̃TS (x̃)

)
dx̃

is the N-factor. Here we are able to consider the spectra of the T–S waves generated
by the vorticity and entropy fluctuations separately on the assumption that there is no
cross-correlation between the two types of fluctuations. Such an assumption, which is
not unreasonable in view of the independent nature of these two types of motions, is
also needed in other applications (e.g. Goldstein 1979).

For simplicity, we assume that the free-stream turbulence is isotropic, for which the
spectrum tensor has the following representation (Batchelor 1953):

Φ
(∞)
ij =

E(k)

4πk4

(
k2δij − kikj), (5.7)

where k = |k| and E(k) is the energy spectrum function (normalized by U2∞(ν∞/U∞)),
and is related to the longitudinal one-dimensional spectrum function E1(k) via

E(k) = k3 d

dk

(
1

k

d

dk
E1(k)

)
. (5.8)

An often used E1(k) is the von Kármán spectrum (Hinze 1959)

E1(k) = 2a0u2∞RΛ
{

1 + (RΛk)
2
}−5/6

, with a0 =

√
πΓ ( 5

6
)

Γ ( 1
3
)
, (5.9)

where ε(u2∞)1/2 is the root mean square of the streamwise velocity of the free-stream
fluctuation, and

RΛ = a0U∞Λe/ν∞
with Λe being the integral length of the turbulence. We note that there are other
choices available for E1(k) (e.g. Gulyaev et al. 1989). Inserting (5.8 and (5.9) into (5.7),
we obtain

Φ
(∞)
ij (k) =

55

9

u2∞
2π2

a0R
5
Λ

(
1 + (RΛk)

2
)−17/6(

k2δij − kikj). (5.10)
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Figure 2. Neutral modes of T–S waves at different Mach numbers. The dotted lines represent the
small-βN asymptote: βN/αN = (M2 − 1)1/2 (Smith 1989).

The spectrum of the temperature fluctuation is chosen to be (see (3-182) and (3-221)
in Hinze 1959)

Φ(∞)
s (k) =

10

3

τ2∞
(2π)2

a0R
3
Λ

(
1 + (RΛk)

2
)−11/6

. (5.11)

The calculation of the spectra Φ(v)
11 and Φ

(e)
11 at a fixed point downstream involves

computing the integral growth rate (or rather the N-factor). This is a rather separate
computation and is well-documented elsewhere. We choose to avoid repeating this
by dropping the exponential factors in (5.5) and (5.6). The resulting expressions
naturally measure the efficiency of various components in the gust in generating the
T–S waves, and so we shall still refer to them as ‘spectra’. Unlike κv (or κe), they have
taken into account the respective amplitude of each component in the free-stream
turbulence.

6. Parametric study and discussion of the results
6.1. Results for a single component

In order to gain further quantitative information about the efficiency of the receptivity,
the dependence of κv and κe on the parameters is investigated. This involves solving
the dispersion relation (3.16) and calculating the functions Ai(η) and  L(η) in (4.8)
numerically. These were done using the Newton–Raphson iteration and a fourth-
order Runge–Kutta method respectively. Figure 2 shows αN (the scaled streamwise
wavenumber) as a function of βN (the scaled spanwise wavenumber) for different
Mach numbers. Note that in the subsonic regime, αN tends to a finite value as
βN → 0. However, in the supersonic regime αN tends to zero also, but the ratio
βN/αN → (M2 − 1)1/2 as shown by Smith (1989). It turns out that κv and κe exhibit
somewhat different features in subsonic and supersonic regimes. So the results for
each regime will be presented separately. The ratio v∞/u∞ is taken to be unity.

The case M = 0.5 is chosen as a representative for the subsonic regime. In figure
3, we show the contours of κv on the (βv, βN)-plane for different incident angles of
the sound. For θ close to zero, κv attains its maximum at βN = 0 implying that
the sound–vorticity interaction favours the excitation of planar (or a band of nearly
planar) T–S waves when the incident sound wave propagates along the free stream.
But as θ increases, the maximum shifts to a finite βN , and when θ is close to π/2,
the maximum is attained at the large-βN end. This implies that when a sound wave
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Figure 3. Contours of κv at different θ values (M = 0.5). (In all the contour plots,
the contour value decreases with the grey degree.)
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Figure 4. Contours of κe at different θ values (M = 0.5).

impinges perpendicular to the wall, the acoustic–vorticity interaction is most efficient
in exciting a band of highly oblique T–S waves. In contrast, the sound–entropy
interaction always tends to excite planar T–S waves, as is shown by contours in figure
4. The above features can be seen more clearly in figure 5(a, b), which illustrates how
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(a) κvm and (b) κem vs. θ.
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Figure 7. (a) κvm (solid line) and κem (dashed line) vs. βN for parallel incident sound (θ = 0).
(b) κvm vs. βN for perpendicular incident sound (θ = π/2). M = 0.5, 0.7, 0.8, 0.85.

κvm and κem vary with respect to θ and βN , where

κvm ≡ max
βv

κv(βv, βN;M, θ), κem ≡ max
βe

κv(βe, βN;M, θ).

The generation of planar T–S waves is of particular relevance for M < 0.5 since
in this range of Mach numbers, they are more unstable than their three-dimensional
counterparts (Smith 1989). In figure 6(a, b), we plot κvm and κem (with βN = 0) against
θ for different Mach numbers. It is noted that they have peaks at θ = 0 and π,
with the value at θ = 0 being only slightly larger than that at θ = π, This means
that as far as the excitation of the planar T–S waves is concerned, upstream and
downstream propagating acoustic waves are almost equally efficient. Admittedly the
coupling is weak for very small Mach numbers. But it becomes stronger rather quickly
as M increases. For example, κvm and κem vary from 0.03 and 0.26 to 0.97 and 1.75
respectively as M is raized from 0.1 to 0.5.

For 0.5 < M < 1, oblique T–S waves become more unstable (Smith 1989) and
so the generation of these waves cannot be ignored and probably becomes more
important. The characteristics of κvm and κem are similar to figure 5, except that the
peak at θ = π becomes progressively milder (compared with the main one at θ = 0)
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as M increases. As is indicated by figure 5, the receptivity appears to be particularly
effective when θ = 0, π/2. We thus examine more closely how the Mach number
affects the coupling for these two incidence directions. The results are presented in
figure 7(a, b), which shows that the coupling increases with M.

We now discuss the results for the supersonic regime. First note that the positive
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Figure 10. Variation of (a) κvm and (b) κem with respect to θ and βN . M = 2.

condition for fTS imposes a cut-off on θ, namely |θ| < π − cos−1(1/M); see (4.13).
Figure 8 shows the contours of κv as a function of βN and βv for different values of
θ with M = 2.0. The maximum of κv occurs at the small-βN limit when θ is close
to zero, and moves to the large-βN limit when θ becomes large. However, unlike
the subsonic regime the small-βN limit does not correspond to (nearly) planar waves
anymore, but rather represents oblique waves propagating along the surface of the
Mach cone. A distinctive feature of these contours is the existence of cusps (one at
θ = 0 and two at θ 6= 0 (or π)), about which the contours cluster. The appearance
of the cusps is due to the fact that as βN → 0, Dv vanishes at βv = ±βs (see (2.52)),
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which means that the problem is somewhat ‘singular’ in the limit (βv, βN)→ (±βs, 0).
Note also that for very small βN (and hence small αN), non-parallelism may affect
the leading-order dispersion relation so that the triple-deck description may cease to
be valid. In the present paper we avoid this singular limit by restricting βN > 0.05.
Contours of κe are displayed in figure 9, where the cusps appear for the same reason.
Unlike the subsonic regime, κe attains its maximum at some finite βN when θ is large.

The perspective plots in figure 10(a, b) illustrate how κvm and κem vary with βN
and θ. We can conclude that (a) if the incident sound is parallel to the free stream,
both the acoustic–vorticity and acoustic–entropy interaction favours the excitation
of the T–S waves which travel along the Mach cone and have long streamwise and
spanwise wavelengths, and (b) if the sound is incident (nearly) perpendicular to the
wall, then the entropy–vorticity interaction generates a band of oblique waves of
finite wavelengths, while the acoustic–vorticity interaction tends to generate highly
oblique waves. Again the incidence directions at which the sound is most effective in
provoking T–S waves are centred at θ = 0, π/2. In figures 11 and 12, we show κvm
and κem at θ = 0, 0.4π for different values of M. Clearly the receptivity becomes more
effective as M increases.
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6.2. Results for the isotropic free-stream turbulence

The calculation of the T–S wave spectra requires the parameter RΛ. Lacking the
relevant data for the compressible flows, we use the data from the low-speed experi-
ments of Westin et al. (1994), who took special measures to produce nearly isotropic
free-stream turbulence, and carefully documented its characteristics, including the
integral scale, the longitudinal energy spectrum, etc. The typical RΛ varies from 2000
to 4000. We choose RΛ = 3000. At fixed M and θ, the spectra Φ

(v)
11 and Φ

(e)
11 are

two-dimensional functions of βN and fs (or equivalently αTS ). Since our interest is in
the case where a single sound wave interacts with a broad turbulence spectrum, we
fix fs = 2× 10−4, which corresponds to the ‘upper limit’ of the frequency range where
the turbulence energy concentrates, and examine the ‘composition’ of the resulting
T–S waves at different incident angles of the sound.

For the case M = 0.5, the spectra of the T–S waves at different θ are shown in
figure 13(a, b). Interestingly, for all incident angles the most predominant response
to the sound–vorticity interaction is a band of oblique waves centred at a finite
βN . These is in contrast to the result for a single component (cf. figure 5a), and the
difference is due to the spectral composition of various components in the free stream,
which is not accounted for by κv . The sound–entropy interaction, on the other hand,
provokes a band of T–S waves centred at the planar modes; see figure 13(b), which
also indicates that the optimal incident sound is the one travelling parallel to the
free stream. But further calculations (not presented here) show that for smaller Mach
numbers a sound wave travelling against, or perpendicular to, the free stream can be
as effective.

The results for the supersonic regime (M = 2.0) are given in figure 14(a, b). For
both sound-vorticity and sound-entropy interactions, the major composition of the
response is a band of oblique T–S waves. But for the former, there exist three effective
incident angles while for the latter there is only one.

6.3. Further comments

Our theoretical results show that a sound wave can generate T–S waves by interacting
with a convecting gust (either a single component or in form of broad-spectrum
turbulence). The magnitude of the T–S waves could be substantial in the subsonic
boundary layer of moderate Mach number and even more so in supersonic flows.
For instance, at M = 0.3, κvm ≈ 0.33 and κem ≈ 0.9 (at θ = 0) according to figure
6. These give CV = 0.33 CE = 0.9, for the case where a sound wave of frequency
fs = 10−4 interacts with a gust with a fluctuation level of 1% say,† implying that the
intensity of the exited two-dimensional T–S wave would be comparable with that of
the acoustic fluctuation. The T–S wave has a frequency fTS ≈ 2.7 × 10−5, while its
neutral Reynolds number R = 4× 105, as can be estimated by using (4.11) and (4.13).
At M = 2, κvm ≈ 15 (see figure 11a), suggesting that the T–S wave amplitude would
be an order of magnitude larger.

For the low-speed boundary layer, the present receptivity is weak. Indeed in the
incompressible limit, the coupling coefficients, as calculated by the present method,
vanish. However, the general idea outlined in § 2 is still valid. In fact, the actual
coupling coefficient is not exactly zero, but is ‘exponentially small’ in the asymptotic
sense. Exponentially small coupling also occurs in other receptivity mechanisms too,
for example in the leading-edge receptivity (Goldstein 1983). Since the Reynolds

† The latest experiments of Dietz (1999) show that linear approximation for the gust is valid up
to turbulence level of ε = 1%.
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Figure 13. The spectrum of the T–S waves generated by isotropic turbulence in the subsonic

regime (M = 0.5): (a) Φ(v)
11 and (b) Φ(e)

11 vs. βN and θ.

number in practice is not very large, such an ‘exponentially small’ coupling may well
turn out to be not so small in the numerical sense. If that is the case, the present
mechanism may play a role in the incompressible boundary layer. In order to estimate
the coupling in that case, one has to investigate the exponentially small signature of
the gust within the boundary layer.

It appears that there are at least three distinctive receptivity mechanisms: the
leading-edge adjustment (Goldstein 1983), the local inhomogeneity scattering (Gold-
stein 1985; Ruban 1984; Duck et al. 1996) and the present acoustic–gust interaction,
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Figure 14. The spectrum of the T–S waves generated by isotropic turbulence in

the supersonic regime (M = 2): (a) Φ(v)
11 and (b) Φ(e)

11 vs. βN and θ.

each of which leads to generation of T–S waves. At the present time, there exist no
relevant experimental data with which our results can be compared. Nevertheless it is
possible for us to made a few suggestions about how experiments might be conducted
so as to check at least some of the theoretical predictions.

As was indicated earlier, in order to verify directly the results in § 4, it is necessary
to introduce a well-defined gust. The experiments of Dietz (1999) show that a single-
frequency gust can be generated in a well-controlled manner by vibrating a ribbon in
the free stream. Now if at the same time, a sound wave of appropriate frequency is
applied to interact with the gust, detectable T–S waves may be excited. The difficulty
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of course is that the experiments must be conducted at relatively high speeds at which
the compressible effect is appreciable.

Another possible model for a gust is the Kármán vortex street, which may be
generated from a cylinder inserted in the free-stream. Vortices are shed at a certain
frequency and convected downstream to form a periodic pattern in the streamwise
direction. (The convection velocity would be close to the free-stream velocity if the
vorticity is weak.) An infinite array of point vortices may be used as a model for the
street. The analysis in § 3 can be readily extended to this case so that a meaningful
comparison could be made.

In a boundary layer where the convecting gust is of true turbulent nature, our theory
shows that a deterministic sound wave can interact with the relevant components in
the gust to excite a spectrum of T–S waves, which then become dominant downstream.
Experimentally, the relevant quantities to measure are the mean-square values and
the two-point covariances from which one can determined the T–S wave spectrum via
Fourier transform. These quantities can be predicted theoretically as long as we know
the spectrum tensor of the velocity fluctuation and the spectrum of the temperature
fluctuation in the free stream. From both the experimental and theoretical point view,
it is advantageous to create the standard free-stream condition where the turbulence
is (nearly) isotropic as in Westin et al. (1994), since in this case the free-stream
turbulence is completely characterized by the longitudinal energy spectrum function
E1(k); this is the only input that the theory requires the experiments to provide in
advance.

The suitable Mach number range for conducting such experiments probably is
0.3 < M < 0.8. This is because in this range the receptivity is already strong enough
and on the other hand one can avoid the transonic complications as well as shocks
which would occur at supersonic speeds. Clearly, performing these experiments is
a major challenge. It is our hope that the theoretical results in the present paper
will provide useful guidance as well as necessary stimulus for further laboratory
investigations.

The author would like to thank Professor J. T. Stuart, Dr S. J. Cowley and Professor
M. Gaster for helpful discussion, and Dr M. E. Goldstein for encouragement. Thanks
are also due to Dr L. Zabieski for his assistance with computer graphics, and to the
referees for their detailed comments and suggestions, which have led to improvement
of the present work.
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